Use Different Mathematical Methods to Solve Three Dimensional Conduction Heat Equation in Cartesian Coordinate
نویسندگان
چکیده
In this paper three-dimensional heat conduction equation in cartesian coordinate has been solved two different methods one of which depends on the separation variables and other integral transform .The results are got plotted by using Matlab. And obtained showed difference between that were used solution . That is evident illustrations According to it was concluded method best because fewer steps reached
منابع مشابه
specialized methods to teach spelling: comparing three methods
چکیده: بررسی ادبیات مربوطه در کشور در زمینه یادگیری زبان انگلیسی نشان میدهد که علیرغم اهمیت املا در فرآیند یادگیری به طور عام و یادگیری زبان انگلیسی به طور خاص، این مولفه از جایگاهی متناسب با اهمیت آن برخوردار نیست و عمدتاً نادیده گرفته شده است. تحقیقات گستردهای در خارج از کشور در مورد ماهیت این مولفه صورت گرفته است، در حالی که به جرأت میتوان گفت در داخل کشور گامی در مورد درک ماهیت آن و فرآی...
15 صفحه اولAlgebraically Explicit Analytical Solution of Three- Dimensional Hyperbolic Heat Conduction Equation
In this paper, the three-dimensional hyperbolic effect subjected to a cosine heat flux boundary condition is carried out. Equations in rectangular coordinates are solved. Analytical solution with method of separation of variables is derived. The main aim of this paper is to obtain some possibly explicit analytical solution of the (1+3)-dimensional hyperbolic heat conduction equation for given i...
متن کاملHeat conduction in a three dimensional anharmonic crystal.
We perform nonequilibrium simulations of heat conduction in a three dimensional anharmonic lattice. By studying slabs of length N and width W, we examine the crossover from one dimensional to three dimensional behavior of the thermal conductivity kappa. We find that for large N, the crossover takes place at a small value of the aspect ratio W/N. From our numerical data we conclude that the thre...
متن کاملExplicit Difference Methods for Solving the Cylindrical Heat Conduction Equation
? = 0(r = 0), i^=-F(i), (r=l) dr u dr where Fit) is an empirical function of t. In all cases, as far as the authors are aware, the differential coefficients in (1) are considered separately when replaced by differences, and the principal term in du the truncation error of any difference formula obtained in this way contains — and ö u —Z-. This can be seen by obtaining the time derivatives of u ...
متن کاملMonte Carlo Optimization to Solve a Two-Dimensional Inverse Heat Conduction Problem
This paper establishes a numerical-probabilistic algorithm based on a discretization scheme and a simulation method for solving a two-dimensional inverse heat conduction problem with two unknown boundary conditions. At the beginning of the algorithm, alternative direction implicit scheme is used as a numerical method to discretize the problem domain and then an approach of Monte Carlo method is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ma?alla? al-r?fidayn li-?ul?m al-??sib?t wa-al-riy??iyy??
سال: 2022
ISSN: ['1815-4816', '2311-7990']
DOI: https://doi.org/10.33899/csmj.2022.176584